If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9p^2-5=2p
We move all terms to the left:
9p^2-5-(2p)=0
a = 9; b = -2; c = -5;
Δ = b2-4ac
Δ = -22-4·9·(-5)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{46}}{2*9}=\frac{2-2\sqrt{46}}{18} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{46}}{2*9}=\frac{2+2\sqrt{46}}{18} $
| 2m^2-12m-19=6 | | 2/3p+10=22 | | 3x^2-9x-127=-7 | | 5(2+x)=4(x+20) | | 4x-10+2x-10+50=180 | | X+17+3=-21-3x-25 | | 6x-8+2x-5=2-2x | | 3r^2-10r-48=0 | | 6x-4x+3=20 | | 3x+2(4x+5)=120 | | 3x+7-10=4-1 | | 3x+x+x=270 | | 3x+x+x=360 | | 2d-12=7d+8 | | q/6+6=19 | | 6x-7=7x+3= | | 174=2(87+-1.5y)+3y | | 4n2-8n-5=0 | | 13n-5n+-3=-11 | | 4+4p=32 | | 5x+38=7x-12 | | d/14+9=16 | | 1x=3+5 | | 12y−3=5y+60 | | Y=7.4x+8.4 | | -4j-5j=18 | | q/16+19=20 | | -6+6y=1 | | v/16+2=2 | | 4x2+5x*8=0 | | 7m-4m+m=8 | | 2x+3x=-10-5 |